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One- and two-dimensional solitons in second-harmonic-generating lattices
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In a model of a dynamical lattice with the on-site second-harmonic-generating nonlinearity and harmonic
intersite couplings~that may be equal or different for the fundamental and second harmonics!, various solitary-
wave solutions are considered in one and two dimensions~1D and 2D!. Fundamental~single-hump! solitons
are identified in either dimension and their stability is examined and compared to previous results as well as to
what is known for the model’s continuum counterpart. Stability limits in terms of the coupling constants, which
depend on the value of the phase-mismatch parameter, are found for solitons of the twisted-mode type in the
1D lattice, and for their counterparts of two different types~one being a discrete vortex! in the 2D lattice. When
the twisted-mode soliton is unstable, the instability, which may be either oscillatory or due to imaginary
eigenfrequency pairs, transforms the unstable soliton into a stable fundamental one, in both 1D and 2D cases.

DOI: 10.1103/PhysRevE.65.056606 PACS number~s!: 63.20.Pw
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I. INTRODUCTION

Dynamics of localized states~‘‘discrete solitons,’’ i.e., in-
trinsic localized modes, ILMs! in nonlinear dynamical lat-
tices, both one and two dimensional~1D and 2D!, have been
attracting a great deal of interest, starting from the works
Refs.@1,2#, where basic types of ILMs were predicted for 1
lattices. A review of the ILM dynamics was given in Ref.@3#
~see also the paper@4#! and more recently in Ref.@5#. ILMs
were observed in a number of recent experiments, includ
localized spin-wave excitations in quasi-1D antiferromagn
@6#, complex electronic materials such as halide-bridg
transition-metal complexes@7#, coupled optical-waveguide
arrays@8,9#, and Josephson ladders@10,11#.

Quite commonly, models supporting ILMs assume lattic
with harmonic intersite interactions and an on-site qua
potential. By means of the rotating-wave approximatio
these models can be reduced to the discrete nonlinear S¨-
dinger ~DNLS! equation. Besides that, the DNLS equati
finds direct applications in modeling arrays of nonlinear o
tical fibers@12# and waveguides@8,9# and other systems suc
as, for instance, long biological molecules~see, e.g., Ref.
@13# and references therein!. The study of ILMs and their
stability in the DNLS equation~s! is facilitated by the fact
that ILMs are then represented by stationary solutions.

Fewer works considered another physically relev
model of an optical-waveguide array, in which the nonline
ity is quadratic, representing the second-harmonic genera
~SHG!. Among the first results for ILMs in discrete SHG
systems were those reported in Ref.@14# ~see also a review
@15# on solitons in SHG media, which includes a secti
describing solitons in discrete systems!. Besides the optical-
waveguide arrays with quadratic nonlinearity, the sa
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model may describe dynamics of Fermi-resonance interf
modes in multilayered systems based on organic crys
@16#. Further studies have revealed 1D, 2D, and 3D stron
localized solitons in the latter system, of both bright~‘‘peak’’
and ‘‘crater’’! and dark types, see Refs.@17# and references
therein; interestingly, some types of the multidimension
solitons in that model have no 1D analogs in the same s
tem. A similar model applies to a nonlinear dynamical latti
with the on-site quadratic nonlinearity of a general for
@18#.

It is relevant to mention that physical models of coupl
SHG waveguides were studied in detail in Ref.@19#. In that
work, various dynamical states were analyzed for the cas
a ‘‘monomer’’ ~a single waveguide! and a ‘‘dimer’’ ~two
coupled waveguides!. SHG systems embedded in linear la
ered structures have also recently been used to design a
dratic nonlinear photonic crystal and study discrete solit
waves in it@20#.

The aim of the present work is to present results o
systematic study of the existence and stability of vario
types of ILMs in 1D and 2D SHG dynamical lattices. In th
1D case, we find the fundamental~single-humped! and the
so-called twisted-mode solitons. In this case, our findin
partly overlap with results that were presented, in a sket
form, in Ref. @14#, but most results were not presented els
where before~to the best of our knowledge!. We also report
detailed results for the 2D lattices, including fundamen
solitons, twisted modes, as well as solitons with intrin
vorticity ~for the DNLS equation in two dimensions with th
cubic nonlinearity, the existence of discrete solitons w
vorticity is a well-established fact; see e.g.,@21,22# and ref-
erences therein!. We find that the fundamental solitons ar
most typically~for the parameter ranges considered here!,
stable in either dimension. However, instabilities of such
lutions do occur and have also been identified. Topologica
charged solitons, i.e., the twisted-mode ones in 1D and
as well as genuine vortex solitons in 2D, always have sta
©2002 The American Physical Society06-1



w
ta
ys

e

g
e

e

n
ice

re

m

w-
ng
qs

g

ne
ta

s
he

,

l-
m

lem

f
ba-

tat-

-
re-
this

a

BORIS A. MALOMED et al. PHYSICAL REVIEW E 65 056606
ity borders. These conclusions are in line with the kno
facts that the fundamental solitons are, in most cases, s
in the continuum limit, while the twisted solitons are alwa
unstable in the same limit.

II. THE MODEL

The description of the parametric interaction~mutual con-
version! between the fundamental-frequency~FF! waves
cn(t) and their second-harmonic~SH! counterpartsfn(t) in
an array of SHG waveguides with one discrete spatial dim
sion is based on the coupled equations

i
]

]t
cn52C1D2cn2cn* fn , ~1!

2i
]

]t
fn52C2D2fn2cn

22kfn , ~2!

where D2cn5cn111cn2122cn is the discrete Laplacian
with unit spacing,C1,2 are the FF and SH lattice-couplin
constants, andk is the mismatch parameter. It should b
noted that, in the case of the waveguide array,t has the
meaning of propagation distance, rather than time.

In some works~in particular, in Ref.@14#!, the basic equa-
tions were taken in a slightly different form, without th
factor of 2 in front of the time derivative in Eq.~2!,

i
]

]t
cn52C1D2cn2cn* fn , ~3!

i
]

]t
fn52C2D2fn2cn

22kfn . ~4!

This difference may be essential if the coupling consta
C1,2 are fixed independently. In this connection, we not
that, in the continuum limit, i.e., asC1,2→`, the ratioC1 /C2
is equal to the ratio of the diffraction coefficients, which a
the same for both harmonics@15#. Therefore we will, chiefly,
consider the caseC15C2 in Eqs.~1! and ~2!. Nevertheless,
the couplings between discrete waveguides in the array
depend on the carrier wavelength, thereforeC1 andC2 may
be different~in that case, one should expect thatC2<C1). To
be completely accurate, we note that in@14#, Eq. ~3! also had
a factor of 2 in front of the last term in the equation; ho
ever, the latter factor can be easily removed by a rescali

Note that, if the equations are taken in the form of E
~3! and ~4!, rather than Eqs.~1! and ~2!, and it is fixed that
C15C2, this is readily shown to be tantamount to takin
Eqs. ~1! and ~2! with C25C1/2, which is also a physically
meaningful case, as it complies with the above-mentio
restrictionC2,C1. We have checked that results for the s
bility of solitons, if obtained from Eqs.~3! and ~4!, turn out
to be similar to those that will be displayed below for Eq
~1! and ~2! ~when, nevertheless, there are differences, t
will be pointed out!.

Equations~1! and~2! conserve two dynamical invariants
namely, the Hamiltonian
05660
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FC1ucn2cn21u21
1

2
C2ufn2fn21u22

1

2
cn

2fn*

2
1

2
~cn* !2fn2

1

2
kufnu2G

~where the asterisk stands for complex conjugation! and the
net powerP[2P11P2, where the FF and SH powers are

P15(
n

ucnu2, P25(
n

ufnu2. ~5!

If Eqs. ~3! and ~4! are used instead of Eqs.~1! and ~2!, the
conserved net power isP11P2.

We will consider stationary solutions exponentially loca
ized in both FF and SH components, which have the for

cn~ t !5exp~ iLt !un , fn~ t !5exp~2iLt !vn . ~6!

Once the stationary solutions are identified~by means of
numerically performed Newton iterations!, stability analysis
around them is performed by solving the eigenvalue prob
for a perturbed solution, which is sought for in the form

cn~ t !5exp~ iLt !@un1an exp~ ivt !1bn exp~2 iv* t !#,
~7!

fn~ t !5exp~2iLt !@vn1cn exp~ ivt !1dnexp~2 iv* t !#,
~8!

where v is the ~complex, in the general case! eigenfre-
quency,an , bn , cn , anddn being infinitesimal amplitudes o
the perturbation. The linearized equations for the pertur
tions, as derived from Eqs.~1! and ~2!, are

2van52C1D2an2un* cn2vnbn* 1Lan , ~9!

vbn* 52C1D2bn* 2undn* 2vn* an1Lbn* , ~10!

22vcn52C2D2cn22unan2kcn14Lcn , ~11!

2vdn* 52C2D2dn* 22un* bn* 2kdn* 14Ldn* . ~12!

The latter must be solved with the boundary conditions s
ing that the perturbation eigenmodes remain bounded~or
vanish! as unu→`.

III. ONE-DIMENSIONAL SOLITONS AND THEIR
STABILITY

A. Fundamental solitons

It is easy to find a family of fundamental-soliton solu
tions, in which both the FF and SH components are rep
sented by single-humped pulses. One can easily create
solution branch, starting from the anticontinuum~AC! limit,
C1,250. In this limit, the fields are different from zero at
single lattice siten5n0, where

vn0
5L, un0

5A~2L2k!vn0
. ~13!
6-2
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FIG. 1. Fundamental~single-
humped! solitons in the discrete
SHG model for k50.2 and L
50.25. The results shown in thi
figure and in Fig. 2 were obtained
for Eqs. ~1! and ~2!. In other fig-
ures, we used Eqs.~3! and~4!, un-
less explicitly stated otherwise
The top panel shows the norm o
the FF ~circles! and SH ~stars!
fields vs the coupling constan
C15C2[C. The middle panel
shows an example of the solutio
~FF and SH components ar
shown, respectively, by circles
and stars! for C50.1368 ~which
corresponds to the vertical line in
the top panel!. The bottom panel
shows the corresponding eigenfre
quencies;v r andv i stand for their
real and imaginary parts, respec
tively. The soliton is stable, as
there are no eigenfrequencies wi
v i5” 0.
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These solutions continue to exist as discrete solitons at fi
C1,2, which may be stable according to Ref.@14# ~although
the eigenvalues were not computed in that work!, and they
go over into the well-known fundamental SHG solitons
the continuum limit,C1,2→`, most of which are stable in
the rigorous sense@15,23#.

As it was mentioned above, we setC15C25C in the
computations, unless stated otherwise. Using the scaling
variance of the equations, we fixed the frequency, settingL
50.25 in most cases, and variedC, starting from the AC
limit, C50 @see Eqs.~13!#. Nevertheless, the persistence
the basic phenomenology was verified by varyingL as well.

The branch of the fundamental-soliton stationary so
tions is displayed in Fig. 1. The top panel in the figure sho
the FF~circles! and SH~stars! powers, defined in Eq.~5!, as
functions of the couplingC. An example of the FF and SH
solitary waves is shown, forC50.1368 ~corresponding to
the vertical line in the top panel!, in the middle panel of the
figure.

The eigenfrequencies produced by the linearized eq
tions for the particular soliton solution shown in the midd
panel of Fig. 1 are presented in the lower panel of the figu
which displays the spectral plane (v r ,v i) of the eigenfre-
quenciesv[v r1 iv i . Infinitesimal delocalized perturba
tions ;exp(iqn) give rise to two continuous bands in th
spectrum of small perturbations around the soliton. The c
tinuous bands are parametrized by the perturbation w
numberq, according to the dispersion relations

v56@L12C~12cosq!#, ~14!

v56F2L2
k

2
1C~12cosq!G . ~15!
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If Eqs. ~3! and~4! are used instead of Eqs.~1! and~2!, then
Eq. ~15! takes the formv56@2L2k12C(12cosq)#. The
absence of any isolated eigenfrequency with a nonz
imaginary part in the lower panel of Fig. 1 confirms th
linear stability of the fundamental soliton.

Notice, however, the presence of isolated real eigen
quencies in Fig. 1, which correspond tointernal modesof the
soliton. These have bifurcated from the edges of the cont
ous spectrum~CS!. The existence of such modes is an im
portant fact. In the continuum limit, internal modes in SH
solitons were studied in detail in Refs.@23,24#. In Fig. 2, we
display the internal-mode eigenfrequencies of the solit
found in the present discrete model as functions of the c
pling constant. The top panel of the figure shows the mo
bifurcating from the upper edge of CS. The solid line cor
sponds to an internal mode, which survives even in the c
tinuum limit @24#, while the dashed line indicates a mode th
bifurcates from the upper edge of one CS band, but is t
eventually absorbed by the upper edge of the other band
Eqs. ~14! and ~15!. The solid line corresponds to an eve
parity mode, while the opposite is true for the dashed li
The amplitudes of the corresponding eigenvectors are
comparable amplitude in their FF and SH components~how-
ever the amplitude of the SH has been found to be sligh
larger than that of the FF in our numerical computation!.
Note that the upper edges of the two bands~14! and ~15!,
corresponding to cosq521, cross each other at 2C5L
2k/2.

In the bottom panel of Fig. 2, the eigenfrequencies
internal modes bifurcating from the lower edge of the co
tinuous spectrum are shown. The eigenmode associated
the eigenfrequency depicted by the solid line in this pane
analogous to the so-called pinning or translational eig
6-3
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BORIS A. MALOMED et al. PHYSICAL REVIEW E 65 056606
FIG. 2. The internal modes
eigenfrequencies as functions ofC
for the fundamental solitons. The
top panel pertains to the mode
that are close to the top edge o
the upper band of the continuou
spectrum@the upper edges of the
continuous bands, given by Eqs
~14! and ~15!, are shown by the
dashed-dotted lines#. The solid
line corresponds to a genuine in
ternal mode, which lies outside
the bands for all the values ofC.
The dashed line shows a mod
that bifurcates from the top edg
of the upper band and is eventu
ally absorbed by the top edge o
the lower band. The bottom pane
shows the bottom edge of th
lower band of the continuous
spectrumv5L ~dash-dotted line!
and the frequencies of the bifur
cating ‘‘pinning’’ ~solid line! and
‘‘breathing’’ ~dashed line! modes
as a function ofC. k50.2.
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mode, which is well known for solitons in 1D dynamic
lattices with cubic nonlinearity. Similarly, the eigenmode a
sociated with the eigenfrequency shown by the dashed lin
the counterpart of the breathing or edge mode, which
known in the cubic case@25,26#. As is expected from the
Sturm-Liouville theory, the pinning mode for a fundamen
soliton will have an antisymmetric spatial profile~odd par-
ity!, while the opposite will be true for the even-pari
breathing mode.

On the basis of a large body of numerical results, we h
concluded that the fundamental~single-humped! branch of
the soliton solutions is, in the typical range of paramet
used herein, most commonly stable. Comparing this re
with the known results for the stability of the 1D fundame
tal x (2) solitons in the continuum limit, it is relevant to men
tion that the latter solitons are known to be unstable, in te
of our notation, at large positive values ofk @23,24#. This
prompted us to search for a similar instability in the discr
model as well. Indeed, we have found that for values ok
larger than those typically studied here, instability of the fu
damental soliton does occur in the discrete model also.
example of this is given in Fig. 3, where the evolution of t
fundamental-soliton solution is shown as a function ofk for
C50.05. It has been found that fork'0.456~the rightmost
point in the top panel of Fig. 3, whose spatial profile a
eigenfrequencies are shown in the middle and bottom pan
respectively!, the branch becomes unstable. The instabi
arises due to a pair of eigenfrequencies~that have bifurcated
from the continuous spectrum! that become imaginary ask
increases. The bifurcating mode is the even-parity breath
mode. This scenario is typically observed in the evolution
the fundamental branch following the variation of the m
match parameter and is analogous to that observed in
continuum version of the model@23,24#.
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B. Twisted-mode solitons

We now turn to the so-called twisted-localized-mo
~TLM ! solutions. These were originally investigated in mo
els with the cubic nonlinearity in Refs.@27,28#. Later, they
were studied in that context in Ref.@29#, and their stability
was detailed in Ref.@30#. In Ref. @14# they were briefly con-
sidered in the SHG lattice. Our aim here is to give comp
hensive results for such solutions. In the following sectio
they will be extended to the 2D case. We note that, unlike
1D lattice model with the cubic nonlinearity, in which th
TLM disappears in the continuum limit, solitons of this typ
also exist in the continuum SHG models@34#, but they are
always unstable@15#. The latter fact suggests that TLM sol
tons should lose their stability at a finite value ofC, as we
will verify below.

In the AC limit, one can excite a TLM by settingvn0

5vn0115L and un0
52un0115A(2L2k)vn0

, while all
the other components are zero, cf. Eqs.~13!. Continuing the
solution branch, we obtain results summarized in Fig. 4. T
top panel shows the evolution of the norm of the FF~circles!
and SH~stars! components of the TLM soliton vsC. The
second and third panels show an example of a TLM forC
50.1254~corresponding to the vertical line in the top pane!
and its stability spectrum. It is clear from the third panel th
an oscillatory instability~or a Hamiltonian Hopf bifurcation
@31#! has arisen in this case (k520.5 in this case!.

The following possibilities have been found for TLMs i
the systematic numerical analysis of the stability problem

~i! For k,kcr , wherekcr'20.45 @this time, the underly-
ing equations were taken in the forms~3! and ~4!#, there
always exists a critical value of the coupling (Ccr'0.1254
for k520.5, for example!, below which the solution is
stable. ForC>Ccr , the solution is subject to an oscillator
6-4
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FIG. 3. The evolution of the
fundamental soliton with the
variation of the mismatch param
eterk for C50.05. The top panel
shows the norm of the FF~circles!
and SH ~stars! components vsk.
For the final point of the branch
(k'0.456), the middle pane
shows the respective FF and S
spatial profiles, while the bottom
one shows the eigenfrequencies
the linearization indicating the
presence of an instability of the
solution ~due to a pair of imagi-
nary eigenfrequencies!.
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instability, which is generated by a collision of a pair
internal-mode eigenfrequencies that have a negativeKrein
sign @25,32# with the CS~or with a pair of eigenvalues tha
have bifurcated from the CS!. For valuesk,kcr of the mis-
match, we have found the critical value of the coupling co
stant as a function ofk, which is shown in Fig. 5.

~2! For kcr,k,kcr
(2) , wherekcr

(2)'20.005, there are no
oscillatory instabilities. What happens instead, is that the
05660
-

-

ternal eigenmodes do not get close to the CS bands, be
pairs of eigenvalues bifurcate from them. Eventually, forC
.Ccr , the interaction between eigenmodes causes the
~internal! pair of eigenfrequencies to exit as imaginary on
~no collision takes place!, followed subsequently by the ap
pearance of additional imaginary eigenfrequencies~originat-
ing from the modes that bifurcated from the CS!. An ex-
ample of the evolution of the internal-mode eigenvalue
-

n

e

in

.

FIG. 4. The figure shows theC
dependence of the TLM solution
branch, starting from the anticon
tinuum limit for k520.5. The top
panel demonstrates the variatio
of the FF~circles! and SH~stars!
powers with C. At Ccr50.1254
~vertical line in the top panel!, the
TLM solution is shown in the
middle panel~the notation for the
FF and SH components is th
same as above!. The correspond-
ing eigenfrequencies are shown
the lower panel. An oscillatory in-
stability can be clearly discerned
6-5
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FIG. 5. The critical valueCcr , such that for
C,Ccr the TLM soliton is stable, while forC
>Ccr a destabilizing Hamiltonian Hopf bifurca
tion takes place, is shown vsk for k,kcr

'20.45.
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ds
k520.3 is given in Fig. 6. It can be seen that, despite
initial motion towards the band, the eigenfrequency is ‘‘r
pelled’’ by the modes bifurcating from the CS, and returns
the origin to exit then as an unstable~imaginary! one.

~3! Finally, for k.kcr
(2) , the TLM’s internal modes were

shown to be unstable, even for very smallC. We do not
display detailed results for this case, as the correspon
solitons are definitely unstable~i.e., Ccr'0).

We also probed the behavior of the internal modes a
function of k for a given coupling constantC, which is
shown in Fig. 7. The top panel illustrates a transition of
dominant eigenmode from stability~solid line! to instability
~dashed line!. An interesting observation to make here is t
parabolic approach to the instability, as is seen in the in
@v2 scales linearly with (k2kinst), wherekinst is the value of
k for which the instability sets in#.

The above features are shared by the two abo
mentioned versions of the SHG lattice, based, respectiv
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on Eqs.~3! and ~4!, and Eqs.~1! and ~2!, with C15C2 in
both cases. However, for the latter model, the values of
parameters at which the same phenomena appear were f
to be different from those in the former model. In particul
kcr andkcr

(2) were shifted to higher values: in the latter mod
kcr'0.15 andkcr

(2)'0.25. Nevertheless, the basic pheno
enology of the main regimes remains unaltered.

We have also considered a scenario in whichC15” C2. In
particular, since, as it was mentioned above, the SH coup
constant may be smaller than its FF counterpart, we con
ered the extreme case withC250, which is principally dif-
ferent from the above symmetric case withC15C2. Here,
the phenomenology was found to be somewhat differen
characteristic example can be taken in the regionk,kcr ,
where the eigenvalue quartet bifurcates atC5C1.Ccr . It
was found that, ifC250, the quartet moved, after the Hami
tonian Hopf bifurcation~which, for instance, occurs atC
50.0814 fork520.5), towards the CS, rather than towar
e
en
n-
n

he
FIG. 6. Fork520.3, such thatkcr,k,kcr
(2) ,

the evolution of the internal-mode frequencyv is
shown vs the coupling constantC for a TLM soli-
ton. After a maximum excursion, the pair of th
eigenfrequencies returns to the origin, and th
exits as an imaginary one, making the branch u
stable. The stable portion of the branch is show
by the solid line, while the dashed one shows t
unstable part.
6-6
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FIG. 7. The continuation of
the eigenvalues for fixedC
50.075 as a function ofk. The top
panel shows the internal-mod
frequency approaching the origi
in the spectral plane~solid line!,
and then exiting as an unstab
eigenfrequency~dashed line!. No-
tice the parabolic approach to th
instability border in the inset. The
lower panel demonstrates, b
means of the solid and dashe
lines, the variation of two internal-
mode eigenfrequencies above th
top edge of the upper continuou
spectrum band as a function ofk.
a
n
e
m
ic

n

a
th
tt

al
ed

i-
ith

of
-
d

the origin as in the previous cases. This resulted in a beh
ior of the quartet’s imaginary part very strongly reminisce
of Fig. 2 in Ref. @33#. The eigenmode with the negativ
Krein sign @25,32# seeks gaps in the continuous spectru
~that are present due to the finite size of the system for wh
the numerical computations were done!, and approaches
them so as to cause restabilization of the branch. This is
possible where the density of states is high~near the band
edge!, but becomes possible for largerC, as regions of the
continuous spectrum with smaller density of states are
proached. The details are displayed in Fig. 8. We stress
these results have direct physical meaning, as the real la
05660
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is finite not only in numerical computations but in a physic
experiment too. In this case, the computation was perform
in domains ofN5100 sites with periodic boundary cond
tions~such a case may be quite realistic for experiments w
the above-mentioned arrays of optical SHG waveguides!.

C. Nonlinear stage of the instability development for the
twisted-localized-mode solitons

The natural next step is to simulate the development
the TLM’s instabilities of different types within the frame
work of the full nonlinear model. To this end, we performe
f

rds
r
c-
is
ble
-

dic
FIG. 8. The evolution of the imaginary part o
the quartet eigenvalues~for the TLM soliton! in
the caseC250, k520.5. It is seen that the
instability occurs at C50.0814. However,
the quartet does not subsequently move towa
the origin in the spectral plain, as it would do fo
C15C2, but rather towards the continuous spe
trum. It then attempts to return to the real ax
and make the spectrum stable; this is not possi
for C close toCcr , but becomes eventually pos
sible for larger values ofC. In this computation,
N5100 nodes have been used, and perio
boundary conditions were imposed.
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FIG. 9. The temporal evolution of the un
stable TLM soliton atk521.5 andC50.15. The
initial TLM configuration was perturbed by a uni
formly distributed random field of maximum am
plitude 0.005. After a transient period, 0,t
,100, the oscillatory instability transforms th
TLM soliton into a ~stable! fundamental one.
Note that the final pulse is shifted to the left rel
tive to the initial configuration.
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direct simulations in the cases of the oscillatory instability,
well as in the case in which the instability stems from ima
nary pairs of eigenfrequencies. A typical example for t
former case, withk521.5 andC50.15, is shown in Fig. 9.
From the linear stability data displayed in Fig. 5 it follow
that the threshold for the Hamiltonian Hopf bifurcation h
been crossed, and an unstable quartet of eigenvalues mu
present at these values of the parameters. To initiate
growth of the instability, we added a small uniformly distri
uted random perturbation to the initial solitary-wave config
ration. Figure 9 shows the onset of the oscillatory instabi
after an initial transient of durationt'100. The instability
does not completely destroy the TLM, but rather rearran
it into a fundamental solution, emitting jets of nonsolito
waves~lattice phonons! in the process. Notice that the resu
ant fundamental soliton is slightly displaced with respect
the original position of the TLM.

A similar outcome is observed in the case of the insta
ity dominated by the imaginary eigenfrequencies; a typi
05660
s
-
e

t be
he

-
y

s

o

l-
l

example is displayed in Fig. 10, which pertains tok50.2 and
C50.075. One can see that the initially perturbed TLM
eventually converted into a fundamental soliton, which, ho
ever, appears not in a stationary state, but rather with a fi
amplitude oscillatory internal mode, excited in the course
the instability-induced conversion.

In all the cases studied, we have observed the transfor
tion of unstable TLM solitons into stable fundamental on
This outcome seems quite natural, as the fundamental so
is stable for the corresponding values of the coupling c
stant and the mismatch parameter.

IV. TWO-DIMENSIONAL SOLITONS

Solitons in the 2D generalization of the SHG lattice are
issue of principal interest, as they may be compared to t
earlier studied counterparts in the two-dimensional DN
equation with the cubic on-site nonlinearity, see Refs.@5# and
references therein. It is necessary to stress that no coll
y
ty.
of
e
g

FIG. 10. The same as Fig. 9, but fork50.2
andC50.075, where a pair of purely imaginar
eigenfrequencies is responsible for the instabili
The instability again results in the conversion
the TLM into a fundamental soliton. Notice th
persistent internal oscillations in the emergin
pulse.
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FIG. 11. The 2D fundamenta
solitons for k520.5. The top
panel shows the powers of the F
~circles! and SH ~stars! compo-
nents of the solution vsC. A typi-
cal example of the soliton is
shown, forC50.15, in the middle
panel; the left and right subplot
show the FF and SH fields, re
spectively. The bottom pane
shows the linear stability spectrum
for the same case.
th

1

se
lts
al
in

it
so
w

m

po
t

of
th
g

he

al

in
ns.
e of
n

s

d
nd
e
G
e
he
that
he

ds,

M,
for

-

in

ory
l

in-
can
occurs in continuum SHG models in two dimensions@35#,
contrary to what is the case for the NLS equation with
cubic nonlinearity@36#. Due to this fact, solitons~the funda-
mental ones, without intrinsic vorticity! may be stable in the
SHG continuum model in two dimensions@35#, even though
they are unstable at some values of the parameters~similarly
to what was presented in the preceding section for the
case!.

The 2D equations for the FF and SH fieldsumn
and vmn differ from Eqs. ~1!–~4! by the form of the
finite-difference Laplacian: D2umn5um11,n1um21,n
1um,n111um,n2124umn . In line with the above-mentioned
facts known for the continuum SHG model in the 2D ca
our continuation method, starting from the AC limit, resu
in a branch of the fundamental-soliton solutions for all v
ues of the couplingC ~we also call these solutions zero-sp
solitons, as they carry no topological charge, i.e., ‘‘spin,’’S!.
This branch qualitatively shares the stability features of
1D counterpart. Examples of the 2D fundamental-soliton
lutions are shown in Fig. 11. Even though the solution sho
in Fig. 11 is stable, it should be noticed, however, that si
larly to 1D, if k is increased for a fixedC, an imaginary
eigenvalue bifurcation will eventually occur~see also the
discussion in Sec. III A!. For example, forC50.05, we have
found this bifurcation to occur fork'0.915.

The next step is to construct 2D solitons carrying a to
logical charge~‘‘spin’’ ! @22#. It is necessary to mention tha
spinning solitons are well known in the continuum limit
the SHG model, but, contrary to what is the case for
fundamental solitons, the spinning ones are always stron
unstable against azimuthal perturbations, which break t
axial symmetry@37#.

A TLM excited in a 2D setting carries a topologic
05660
e

D

,

-

s
-
n
i-

-

e
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ir

charge. Therefore, we will also consider such structures
the two-dimensional setup as another type of 2D solito
However, since this structure is essentially a bound stat
two out-of-phase sites, we will refrain from calling such a
entity a vortex.

A regular 2D lattice vortex@22#, whose structure emulate
both the real and imaginary parts of exp(iu), can be based on
a dual twisted ansatz@22#. In this case, one TLM is arrange
along one lattice direction in the real part of the solution, a
another TLM is built along the orthogonal direction in th
imaginary part. As it follows from the analysis of the SH
equations~at the AC limit!, such a dual structure can b
placed only in the FF field. However, the difference from t
configuration considered in the previous paragraph is
this time the corresponding SH field emulates t
continuum-approximation expression cos(2u), thus carrying
spin 2. Given the topological charge of the FF and SH fiel
we will symbolize such vortices asu1,2&. The unstable spin-
ning solitons of the continuum SHG model@37# are of this
type.

We have found that the phenomenology of the 2D TL
illustrated by Fig. 12, is similar to that described above
its 1D counterpart. In particular, fork520.5, a destabilizing
Hamiltonian Hopf bifurcation, generating a quartet of com
plex eigenvalues, takes place atC5Ccr

(2D)[0.145. It is note-
worthy that this critical value is larger than its counterpart
the 1D version of the model,Ccr

(1D)50.125.
We also considered the development of the oscillat

instability of the TLM solutions in the 2D setting. A typica
example is shown in Fig. 13 fork520.5 andC50.249. The
initial configuration ~not shown here! is a TLM with two
out-of-phase, next-nearest-neighbor peaks in the FF, and
phase, next-nearest-neighbor peaks in the SH field. One
6-9
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FIG. 12. The branch of the
two-dimensional TLM solutions,
found at k520.5. The top plot
shows, as in the previous figure
the norms of the FF and SH com
ponents of the solution vsC. The
middle subplot shows an exampl
of the FF ~left! and SH ~right!
components of the TLM forC
50.145 ~close to the onset of the
oscillatory instability!. The lower
subplot shows the correspondin
eigenfrequencies, indicating th
presence of such an instability.
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observe that the oscillatory instability starts to develop a
t'50, and eventually leads to a single-humped soluti
shown for t'95 in the top panels of Fig. 13. The botto
panels show the development of the instability~which starts
after approximately two oscillations with the FF periodT
58p) for some of the central sites of the configuration. Th
result of the instability was found to be typical, and can
naturally expected on the basis of arguments similar to th
presented in Sec. III for the 1D problem.

The u1,2& vortex-solution branch demonstrates a som
what similar phenomenology, but with a greater variety
potential instabilities. An example of theu1,2& vortex is dis-
05660
r
,

e
se

-
f

played in Fig. 14 fork50.25 andC50.1. The solutions of
this type become unstable due to a quartet bifurcation aC
5Ccr

(1)50.119. Subsequent increase of the couplingC in-
duces further instabilities, which set in atC5Ccr

(2)50.138,
and then atC5Ccr

(3)50.161. An example of the eigenvalu
spectrum is shown, forC50.19, in Fig. 15, where the pres
ence of three quartets of complex eigenvalues is eviden
should be highlighted, however, that the stability~for C
,Ccr

(1)) of this branch withS52 in its SH field can be con-
trasted to the case of cubic nonlinearity, where such soluti
were always found to be unstable@22#.

In all the cases considered, it was found that the net
-
H

e-
ed
ls
l-

the
e
is

t

FIG. 13. An example of the instability of the
2D TLM solution ~used as an initial condition for
the time integration! for k520.5, C50.249, and
L50.25. The two top panels show final two
dimensional spatial profiles of the FF and S
fields ~at t594.65). It is clearly seen that a
symmetry-breaking instability has occurred, r
sulting in the establishment of the single-hump
solution, which is stable. The two bottom pane
show the time evolution of two of the centra
most sites of the configuration for the FF~bottom
left! and SH~bottom right! fields. The solid line
in both cases shows the real part of the field at
site (n,m)5(10,10), the dashed line shows th
imaginary part at (10,10), the dash-dotted line
the real part at (n,m)5(11,10), while the dotted
line shows the imaginary part of the field a
(11,10).
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FIG. 14. An example of theu1,2& vortex,
found for C50.1 andk50.25. This solution is
stable. Shown are the real and imaginary parts
the FF field~in the top left and right panels, re
spectively! and the same for the SH field~the
bottom left and right panels, respectively!.
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pological charge in both FF and SH components of the s
tion coincided with the number of eigenfrequencies hav
the negative Krein sign in the eigenvalue spectrum. This
servation suggests a conjecture that the net vorticity~in both
components of the vortex! gives the number of possible dif
ferent oscillatory instabilities~or, in other words, the maxi
mum possible number of eigenvalue quartets!. Note that, if a
phase change ofp across the soliton in the 1D lattice
considered as the soliton’s topological charge, this conjec
is also true for the 1D TLM solutions, which were consi
ered in the preceding section~their topological charge is the
1 and 0 in the FF and SH components, respectively!.

V. CONCLUSION

We have considered many families of solitary waves i
05660
-
g
-

re

the one- and two-dimensional discrete second-harmo
generating model. The stability of fundamental solitons w
analyzed in both dimensions. We have also studied twis
mode solitons for which there always exists an instabi
threshold, which was identified in the one-dimensional l
tice. Similar stability thresholds have been found for solito
with a topological charge of the typesu1,0& and u1,2& ~the
latter one may be interpreted as a discrete vortex! in the 2D
lattice. In the case when the one-dimensional twisted-m
solitons, or two-dimensional topologically charged ones,
unstable, direct simulations have demonstrated that the in
bility, which may be due to either a complex or purely imag
nary pair of eigenfrequencies, initiates transformation of
unstable soliton into a stable fundamental one, which is p
sible as the topological charge is not conserved in disc
systems.
e

he
i-
ei-
FIG. 15. The linear stability spectrum for th
vortexlike state ofu1,2& type at k50.25 andC
50.19. There are three eigenvalues with t
negative Krein sign, which give rise, after coll
sions with the continuous spectrum, to three
genvalue quartets.
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