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One- and two-dimensional solitons in second-harmonic-generating lattices
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In a model of a dynamical lattice with the on-site second-harmonic-generating nonlinearity and harmonic
intersite couplingsthat may be equal or different for the fundamental and second harmovec®us solitary-
wave solutions are considered in one and two dimengidBsand 2D. Fundamenta(single-hump solitons
are identified in either dimension and their stability is examined and compared to previous results as well as to
what is known for the model’'s continuum counterpart. Stability limits in terms of the coupling constants, which
depend on the value of the phase-mismatch parameter, are found for solitons of the twisted-mode type in the
1D lattice, and for their counterparts of two different tyjgese being a discrete vortei the 2D lattice. When
the twisted-mode soliton is unstable, the instability, which may be either oscillatory or due to imaginary
eigenfrequency pairs, transforms the unstable soliton into a stable fundamental one, in both 1D and 2D cases.
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[. INTRODUCTION model may describe dynamics of Fermi-resonance interface
modes in multilayered systems based on organic crystals
Dynamics of localized statgédiscrete solitons,” i.e., in-  [16]. Further studies have revealed 1D, 2D, and 3D strongly
trinsic localized modes, ILMsin nonlinear dynamical lat- localized solitons in the latter system, of both bri¢fteak”
tices, both one and two dimensior{aD and 2D, have been and “crater”) and dark types, see Refd7] and references
attracting a great deal of interest, starting from the works irtherein; interestingly, some types of the multidimensional
Refs.[1,2], where basic types of ILMs were predicted for 1D solitons in that model have no 1D analogs in the same sys-
lattices. A review of the ILM dynamics was given in RE8]  tem. A similar model applies to a nonlinear dynamical lattice
(see also the papé#]) and more recently in Ref5]. ILMs with the on-site quadratic nonlinearity of a general form
were observed in a number of recent experiments, including18].
localized spin-wave excitations in quasi-1D antiferromagnets It is relevant to mention that physical models of coupled
[6], complex electronic materials such as halide-bridgedSHG waveguides were studied in detail in Rdf9]. In that
transition-metal complexef7], coupled optical-waveguide work, various dynamical states were analyzed for the case of
arrays[8,9], and Josephson ladddrk0,11]. a “monomer” (a single waveguideand a “dimer” (two
Quite commonly, models supporting ILMs assume latticescoupled waveguidesSHG systems embedded in linear lay-
with harmonic intersite interactions and an on-site quarticered structures have also recently been used to design a qua-
potential. By means of the rotating-wave approximation,dratic nonlinear photonic crystal and study discrete solitary
these models can be reduced to the discrete nonlinear-Schiaves in it[20].
dinger (DNLS) equation. Besides that, the DNLS equation The aim of the present work is to present results of a
finds direct applications in modeling arrays of nonlinear op-systematic study of the existence and stability of various
tical fibers[12] and waveguidef3,9] and other systems such types of ILMs in 1D and 2D SHG dynamical lattices. In the
as, for instance, long biological moleculésee, e.g., Ref. 1D case, we find the fundament@ingle-humpeg and the
[13] and references therginThe study of ILMs and their so-called twisted-mode solitons. In this case, our findings
stability in the DNLS equatia(s) is facilitated by the fact partly overlap with results that were presented, in a sketchy
that ILMs are then represented by stationary solutions. form, in Ref.[14], but most results were not presented else-
Fewer works considered another physically relevantvhere beforgto the best of our knowledgeWe also report
model of an optical-waveguide array, in which the nonlinear-detailed results for the 2D lattices, including fundamental
ity is quadratic, representing the second-harmonic generatiosolitons, twisted modes, as well as solitons with intrinsic
(SHG). Among the first results for ILMs in discrete SHG vorticity (for the DNLS equation in two dimensions with the
systems were those reported in Rdf4] (see also a review cubic nonlinearity, the existence of discrete solitons with
[15] on solitons in SHG media, which includes a sectionvorticity is a well-established fact; see e.[21,22 and ref-
describing solitons in discrete systemBesides the optical- erences therejn We find that the fundamental solitons are,
waveguide arrays with quadratic nonlinearity, the sameamost typically(for the parameter ranges considered herein
stable in either dimension. However, instabilities of such so-
lutions do occur and have also been identified. Topologically
*Corresponding author. FAX(413-545-1801. Email address: charged solitons, i.e., the twisted-mode ones in 1D and 2D,
kevrekid@math.umass.edu as well as genuine vortex solitons in 2D, always have stabil-
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ity borders. These conclusions are in line with the known 1 1
facts that the fundamental solitons are, in most cases, stable H= >, | Cy|¢n— ¢hn_1|>+ §C2| bn— n-1l*— §¢§¢:
in the continuum limit, while the twisted solitons are always
unstable in the same limit. 1 1
- §(¢:)2¢n_ §k|¢n|2

Il. THE MODEL

(where the asterisk stands for complex conjugatemd the

The description of the parametric interactignutual con- net powerP=2P, + P,, where the FF and SH powers are

version between the fundamental-frequencifF) waves
() and their second-harmon{§H) counterpartsp,(t) in
an array of SHG waveguides with one discrete spatial dimen- Pi= 2 [l?, Po= E | bnl?. 5
sion is based on the coupled equations A "

P If Egs. (3) and (4) are used instead of Eg&l) and (2), the
i— = —CiArih— % b, (1)  conserved net power B;+ P.
ot /r 182¥n™ ¥n &n We will consider stationary solutions exponentially local-
ized in both FF and SH components, which have the form

J
2i§¢n=—CzAz¢n—wﬁ—k¢n, (2 Ja()=expliAt)u,, n(t)=expiAt)v,. (6)

Once the stationary solutions are identifidsy means of
numerically performed Newton iterationstability analysis
around them is performed by solving the eigenvalue problem
for a perturbed solution, which is sought for in the form

where A, =11+ ¥n_1— 24, is the discrete Laplacian
with unit spacing,C, , are the FF and SH lattice-coupling
constants, andk is the mismatch parameter. It should be
noted that, in the case of the waveguide arfapas the

meaning of propagation distance, rather than time. U =exp(i At)[u, +a, exp(i wt) + b, exp( — i w*t)],
In some workgin particular, in Ref[14]), the basic equa- )
tions were taken in a slightly different form, without the
factor of 2 in front of the time derivative in E@2), ba()=exp(2i At)[v,+c, expliwt) +d.exp —io*t)],
®
J
s Yn=—C1Az¢n= ¥y bn, 3 where w is the (complex, in the general caseigenfre-

quencya,, b,, ¢,, andd, being infinitesimal amplitudes of
9 the perturbation. The linearized equations for the perturba-
i~ dn=—Colop— P2—Ky. (4)  tions, as derived from Eq$l) and(2), are
— * *
This difference may be essential if the coupling constants @@=~ C1A280~ U Ca— vy + A2y, ©
C,, are fixed independently. In this connection, we notice *_ _ o qk *
that, in the continuum limit, i.e., &; ,—~, the ratioC, /C, @by C1Azby —Undy —vnan+Aby (10
is equal to the ratio of the diffraction coefficients, which are
the same for both harmoni¢$5]. Therefore we will, chiefly,
consider the cas€,;=C, in Egs.(1) and(2). Nevertheless,
the couplings between discrete waveguides in the array may
depend on the carrier wavelength, theref@eand C, may
be different(in that case, one should expect tRat=<C,). To
be completely accurate, we note thaf1d], Eq.(3) also had
a factor of 2 in front of the last term in the equation; how-
ever, the latter factor can be easily removed by a rescaling.
Note that, if the equations are taken in the form of Eqs.  !ll. ONE-DIMENSIONAL SOLITONS AND THEIR
(3) and (4), rather than Eqs(1) and(2), and it is fixed that STABILITY
C,=C,, this is readily shown to be tantamount to taking
Egs. (1) and (2) with C,=C;/2, which is also a physically i ) ) .
meaningful case, as it complies with the above-mentioned !t iS €asy to find a family of fundamental-soliton solu-
restrictionC,<C,. We have checked that results for the sta-tions, in which both the FF and SH components are repre-
bility of solitons, if obtained from Eqs(3) and (4), turn out  Sented by single-humped pulses. One can easily create this
to be similar to those that will be displayed below for Egs.Solution branch, starting from the anticontinu@AcC) limit,
(1) and (2) (when, nevertheless, there are differences, the;?l,zzo- In this limit, the fields are different from zero at a

—2wc,=—CyA,c,—2u,a,—kc,+4Ac,, (11
2wd} = —C,A,d} —2uy by —kdy +4Ady . (12
The latter must be solved with the boundary conditions stat-

ing that the perturbation eigenmodes remain boun@ed
vanish as|n|—c.

A. Fundamental solitons

will be pointed out. single lattice siten=ng, where
Equations(1) and(2) conserve two dynamical invariants, B .
namely, the Hamiltonian Ung= Ay Ung=/(2A = K)oy, (13
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14
12 FIG. 1. Fundamental(single-
1 humped solitons in the discrete
0 o8 SHG model fork=0.2 and A
0.6 =0.25. The results shown in this
0.4F figure and in Fig. 2 were obtained
0.2 for Egs. (1) and (2). In other fig-

ures, we used Eq§3) and(4), un-
less explicitly stated otherwise.
The top panel shows the norm of
the FF (circles and SH (stars
fields vs the coupling constant
C,=C,=C. The middle panel
shows an example of the solution
(FF and SH components are
shown, respectively, by circles
and stars for C=0.1368 (which
corresponds to the vertical line in
the top pangl The bottom panel
shows the corresponding eigenfre-
3 op o o ¢ ¢ e guenciesw, and w; stand for their
real and imaginary parts, respec-
tively. The soliton is stable, as
! L ! ! L there are no eigenfrequencies with
02 0.4 0.6 08 1 ;#0.

These solutions continue to exist as discrete solitons at finit Egs. (3) and(4) are used instead of Eq&l) and(2), then
C.,, which may be stable according to Rgt4] (although  Eq. (15) takes the formw= +[2A —k+2C(1—cosq)]. The
the eigenvalues were not computed in that wodnd they absence of any isolated eigenfrequency with a nonzero
go over into the well-known fundamental SHG solitons inimaginary part in the lower panel of Fig. 1 confirms the
the continuum limit,C, ,—c0, most of which are stable in |inear stability of the fundamental soliton.
the rigorous sensfl5,23. Notice, however, the presence of isolated real eigenfre-
As it was mentioned above, we s€4=C,=C in the  quencies in Fig. 1, which corresponditternal mode®f the
computations, unless stated otherwise. Using the scaling irsoliton. These have bifurcated from the edges of the continu-
variance of the equations, we fixed the frequency, seting ous spectrun{CS). The existence of such modes is an im-
=0.25 in most cases, and vari€ starting from the AC  portant fact. In the continuum limit, internal modes in SHG
limit, C=0 [see Egs(13)]. Nevertheless, the persistence of solitons were studied in detail in Ref@3,24. In Fig. 2, we
the basic phenomenology was verified by varyings well.  display the internal-mode eigenfrequencies of the soliton,
The branch of the fundamental-soliton stationary solufound in the present discrete model as functions of the cou-
tions is displayed in Fig. 1. The top panel in the figure showspling constant. The top panel of the figure shows the modes
the FF(circles and SH(starg powers, defined in Ed5), as  bifurcating from the upper edge of CS. The solid line corre-
functions of the couplingS. An example of the FF and SH sponds to an internal mode, which survives even in the con-
solitary waves is shown, fo€=0.1368 (corresponding to tinuum limit [24], while the dashed line indicates a mode that
the vertical line in the top panelin the middle panel of the bifurcates from the upper edge of one CS band, but is then
figure. eventually absorbed by the upper edge of the other band, see
The eigenfrequencies produced by the linearized equaEgs. (14) and (15). The solid line corresponds to an even-
tions for the particular soliton solution shown in the middle parity mode, while the opposite is true for the dashed line.
panel of Fig. 1 are presented in the lower panel of the figureThe amplitudes of the corresponding eigenvectors are of
which displays the spectral plane( ;) of the eigenfre- comparable amplitude in their FF and SH componéntsv-
qguenciesw=w,+iw;. Infinitesimal delocalized perturba- ever the amplitude of the SH has been found to be slightly
tions ~expgn) give rise to two continuous bands in the larger than that of the FF in our numerical computatjons
spectrum of small perturbations around the soliton. The conNote that the upper edges of the two bariid) and (15),
tinuous bands are parametrized by the perturbation waveorresponding to cag=—1, cross each other atC=A

numberq, according to the dispersion relations —k/2.
In the bottom panel of Fig. 2, the eigenfrequencies of
w=*=[A+2C(1-cosq)], (14 internal modes bifurcating from the lower edge of the con-
tinuous spectrum are shown. The eigenmode associated with
w=+|2A— E+C(1—cosq) . (15) the eigenfrequency depicted by the solid line in _this par_1e| is
2 analogous to the so-called pinning or translational eigen-
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' ' ' ' ' ] FIG. 2. The internal modes’
—_ eigenfrequencies as functions©f
- for the fundamental solitons. The
o top panel pertains to the modes
- - that are close to the top edge of
= T ' the upper band of the continuous
T T ' spectrum[the upper edges of the
e continuous bands, given by Egs.
05F === i (14) and (15), are shown by the
— L L L L L dashed-dotted lings The solid
0 0.1 0.2 0.3 0.4 0.5 0.6 line corresponds to a genuine in-
C ternal mode, which lies outside
the bands for all the values @.
The dashed line shows a mode
that bifurcates from the top edge
of the upper band and is eventu-
ally absorbed by the top edge of
the lower band. The bottom panel
shows the bottom edge of the
lower band of the continuous
spectrumw= A (dash-dotted ling
and the frequencies of the bifur-
cating “pinning” (solid line) and
“breathing” (dashed ling modes
as a function ofC. k=0.2.
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mode, which is well known for solitons in 1D dynamical B. Twisted-mode solitons

lattices with cubic nonlinearity. Similarly, the eigenmode as-  \va now turn to the so-called twisted-localized-mode
sociated with the eigenfrequency shown by the dashed Iine_ if;I'LM) solutions. These were originally investigated in mod-

the counterpart of the breathing or edge mode, which IS4 with the cubic nonlinearity i

. : . y in Ref$27,28. Later, they
known n th? cubic cas§25,_26].. As is expected from the were studied in that context in RgR9], and their stability
Stqrm—LpuwlIe theory, the pinning mod_e for a fundamental was detailed in Ref.30]. In Ref.[14] they were briefly con-
;ohton V.V'” have an antisymmetric spatial profiledd PaAr  sidered in the SHG lattice. Our aim here is to give compre-
ity), while the opposite will be true for the even-parity hensive results for such solutions. In the following section,

bregth![ﬂg {)noc_ie. fal body of ical it h they will be extended to the 2D case. We note that, unlike the
N the basis of a 'arge body of numerical resulls, We Navg n"atice model with the cubic nonlinearity, in which the

concluded that the fqndamentéﬂmgle—humpe)j branch of 4 disappears in the continuum limit, solitons of this type
the soliton solutions is, in the typical range of parameter lso exist in the continuum SHG moddB4], but they are

used herein, most commonly stable. Comparing this resuly, s nstaigrs]. The latter fact suggests that TLM soli-
wl € known resufts for the stability of the UNdamen-, s should lose their stability at a finite value ©f as we

tal x? solitons in the continuum limit, it is relevant to men- . verify below,
tion that the_latter solitons are known to be unstable, interms | S AC limit, one can excite a TLM by setting,,

of our notation, at large positive values kf[23,24. This , 0
prompted us to search for a similar instability in the discrete™Vng+1=A and un =—un 1= (2A=k)v,,, while all
model as well. Indeed, we have found that for valuesk of the other components are zero, cf. E4sS}). Continuing the
larger than those typically studied here, instability of the fun-solution branch, we obtain results summarized in Fig. 4. The
damental soliton does occur in the discrete model also. Atop panel shows the evolution of the norm of the (Effcleg
example of this is given in Fig. 3, where the evolution of theand SH(star$ components of the TLM soliton v€. The
fundamental-soliton solution is shown as a functiorkdér ~ second and third panels show an example of a TLMGor
C=0.05. It has been found that fér~0.456 (the rightmost = 0.1254(corresponding to the vertical line in the top panel
point in the top panel of Fig. 3, whose spatial profile andand its stability spectrum. It is clear from the third panel that
eigenfrequencies are shown in the middle and bottom panelgn oscillatory instabilityor a Hamiltonian Hopf bifurcation
respectively, the branch becomes unstable. The instability{31]) has arisen in this casd& —0.5 in this casg

arises due to a pair of eigenfrequendidgst have bifurcated The following possibilities have been found for TLMs in
from the continuous spectrynthat become imaginary ds  the systematic numerical analysis of the stability problem.
increases. The bifurcating mode is the even-parity breathing (i) For k<k, wherek,~ —0.45[this time, the underly-
mode. This scenario is typically observed in the evolution ofing equations were taken in the fornG3) and (4)], there
the fundamental branch following the variation of the mis-always exists a critical value of the couplin@ {~0.1254
match parameter and is analogous to that observed in tHer k=—0.5, for examplg below which the solution is
continuum version of the modg23,24]. stable. ForC=C,,, the solution is subject to an oscillatory
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FIG. 3. The evolution of the

015 1 1 1 1 1 « .

0.2 0.25 03 035 04 045 fun.da.mental soll.ton with the
variation of the mismatch param-
eterk for C=0.05. The top panel
shows the norm of the Fé€ircles

€ and SH(starg components v.
- For the final point of the branch
5° (k~0.456), the middle panel
shows the respective FF and SH
spatial profiles, while the bottom
one shows the eigenfrequencies of
0.02 , , , , , n , , , , the linearization indicating the
presence of an instability of the
0.01F o T solution (due to a pair of imagi-
5 olo o o nary eigenfrequencigs
-0.01f o .
_002 1 1 1 1 1 1 1 1

-05 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 05

0
o

r
instability, which is generated by a collision of a pair of ternal eigenmodes do not get close to the CS bands, before
internal-mode eigenfrequencies that have a negdfien  pairs of eigenvalues bifurcate from them. Eventually, @r
sign[25,32 with the CS(or with a pair of eigenvalues that >C_, the interaction between eigenmodes causes the first
have bifurcated from the QSFor valuesk<k,, of the mis-  (interna) pair of eigenfrequencies to exit as imaginary ones
match, we have found the critical value of the coupling con-(no collision takes plage followed subsequently by the ap-
stant as a function df, which is shown in Fig. 5. pearance of additional imaginary eigenfrequenéeginat-

(2) For ke<k<k(?, wherek{®?>~—0.005, there are no ing from the modes that bifurcated from the XCBn ex-
oscillatory instabilities. What happens instead, is that the inample of the evolution of the internal-mode eigenvalue for

FIG. 4. The figure shows the
dependence of the TLM solution
branch, starting from the anticon-
tinuum limit for k= —0.5. The top
panel demonstrates the variation
of the FF(circles and SH(starg
powers with C. At C.,=0.1254
(vertical line in the top panglthe
TLM solution is shown in the
middle panel(the notation for the
FF and SH components is the

0 0.02 0.04 0.06 c 0.08 0.1 0.12 0.14

0.01 : : : : : : : : : same as aboyeThe correspond-
o o ing eigenfrequencies are show_n in
0.005 - . the lower panel. An oscillatory in-
g or lele} CGEEEED GEEE O GG CGEEE 00 - stability can be clearly discerned.
-0.005 -
o o
_001 1 1 1 1 1 1 1 1 1
-25 -2 -15 -1 -05 0 0.5 1 15 2 25
Q)
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0.13 T T T

0.12

0.11

0.1 FIG. 5. The critical valueC,,, such that for
C<C the TLM soliton is stable, while folC
=C,, a destabilizing Hamiltonian Hopf bifurca-
tion takes place, is shown v& for k<k,

~—0.45.

cr

0.09

0.08

0.07

0.064
25 -2 -1.5 -1 0.5

k=—0.3 is given in Fig. 6. It can be seen that, despite itson Eqgs.(3) and (4), and Egs.(1) and (2), with C;=C, in
initial motion towards the band, the eigenfrequency is “re-both cases. However, for the latter model, the values of the
pelled” by the modes bifurcating from the CS, and returns toparameters at which the same phenomena appear were found
the origin to exit then as an unstalfimaginary one. to be different from those in the former model. In particular,
(3) Finally, for k>k!?), the TLM’s internal modes were K¢ andk® were shifted to higher values: in the latter model,
shown to be unstable, even for very sm@ll We do not Kk,~0.15 andk(cf)wo.ZS. Nevertheless, the basic phenom-
display detailed results for this case, as the correspondingnology of the main regimes remains unaltered.
solitons are definitely unstablee., C.~0). We have also considered a scenario in whigh# C,. In
We also probed the behavior of the internal modes as @articular, since, as it was mentioned above, the SH coupling
function of k for a given coupling constan€, which is  constant may be smaller than its FF counterpart, we consid-
shown in Fig. 7. The top panel illustrates a transition of theered the extreme case wi@,=0, which is principally dif-
dominant eigenmode from stabilitgolid line) to instability ~ ferent from the above symmetric case with=C,. Here,
(dashed ling An interesting observation to make here is thethe phenomenology was found to be somewhat different. A
parabolic approach to the instability, as is seen in the insetharacteristic example can be taken in the redierk,,,
[ w? scales linearly with K— ki), Whereki, is the value of ~ where the eigenvalue quartet bifurcatesCat C,;>C,. It
k for which the instability sets ih was found that, ifC,=0, the quartet moved, after the Hamil-
The above features are shared by the two abovetonian Hopf bifurcation(which, for instance, occurs &
mentioned versions of the SHG lattice, based, respectively-0.0814 fork= —0.5), towards the CS, rather than towards

0.09 T T T T T T

FIG. 6. Fork=—0.3, such thak,<k<k{®,
the evolution of the internal-mode frequeneyis
shown vs the coupling consta@tfor a TLM soli-
ton. After a maximum excursion, the pair of the
eigenfrequencies returns to the origin, and then
exits as an imaginary one, making the branch un-
stable. The stable portion of the branch is shown
by the solid line, while the dashed one shows the
unstable part.

1 1 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
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0.2 T T T T T T
'
P rd
0.15F - 7 4
e
e
rd
8 01 L7 001 . FIG. 7. The continuation of
e / the eigenvalues for fixedC
A / .
0.05- )/ 8 0.005 ’ | =0.075 as a function d€. The top
’ / ’ panel shows the internal-mode
. . . I/ . 0_0.3 -02 -01 K frequency approaching the origin
0 . S
5, 08 06 o4 o2 o 02 04 in the spectral plangsolid line),

K and then exiting as an unstable
eigenfrequencydashed ling No-
tice the parabolic approach to the
instability border in the inset. The
lower panel demonstrates, by
- means of the solid and dashed
lines, the variation of two internal-
mode eigenfrequencies above the
top edge of the upper continuous
spectrum band as a function kf

05

k

the origin as in the previous cases. This resulted in a behavs finite not only in numerical computations but in a physical
ior of the quartet’s imaginary part very strongly reminiscentexperiment too. In this case, the computation was performed
of Fig. 2 in Ref.[33]. The eigenmode with the negative in domains ofN=100 sites with periodic boundary condi-
Krein sign [25,32 seeks gaps in the continuous spectrumtions (such a case may be quite realistic for experiments with

(that are present due to the finite size of the system for whiclhe above-mentioned arrays of optical SHG waveguides
the numerical computations were donend approaches

them_ SO as to cause restgbilization of _the _branch. This is not  ~ \onlinear stage of the instability development for the
possible where the density of states is higlear the band
edge, but becomes possible for larg€r as regions of the
continuous spectrum with smaller density of states are ap- The natural next step is to simulate the development of
proached. The details are displayed in Fig. 8. We stress th#élte TLM’s instabilities of different types within the frame-
these results have direct physical meaning, as the real lattisgork of the full nonlinear model. To this end, we performed

twisted-localized-mode solitons

0.015 T T T T T T

FIG. 8. The evolution of the imaginary part of
the quartet eigenvalug$or the TLM soliton in
001k 4 the caseC,=0, k=-0.5. It is seen that the
instability occurs at C=0.0814. However,
the quartet does not subsequently move towards
R the origin in the spectral plain, as it would do for
C,=C,, but rather towards the continuous spec-
trum. It then attempts to return to the real axis
and make the spectrum stable; this is not possible
for C close toC,,, but becomes eventually pos-
sible for larger values o€. In this computation,
N=100 nodes have been used, and periodic

/\ boundary conditions were imposed.

1
0.06 0.08 0.1 0.12 0.14 0.16 0.18

0.005 7
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FIG. 9. The temporal evolution of the un-
stable TLM soliton ak=—1.5 andC=0.15. The
initial TLM configuration was perturbed by a uni-
formly distributed random field of maximum am-
plitude 0.005. After a transient period,<Q
<100, the oscillatory instability transforms the
TLM soliton into a (stable fundamental one.
Note that the final pulse is shifted to the left rela-
tive to the initial configuration.

direct simulations in the cases of the oscillatory instability, asexample is displayed in Fig. 10, which pertainkts0.2 and

well as in the case in which the instability stems from imagi-C=0.075. One can see that the initially perturbed TLM is
nary pairs of eigenfrequencies. A typical example for theeventually converted into a fundamental soliton, which, how-
former case, wittk=—1.5 andC=0.15, is shown in Fig. 9. ever, appears not in a stationary state, but rather with a finite
From the linear stability data displayed in Fig. 5 it follows amplitude oscillatory internal mode, excited in the course of
that the threshold for the Hamiltonian Hopf bifurcation hastpe instability-induced conversion.

been crossed, and an unstable quartet of eigenvalues must bejp gl the cases studied, we have observed the transforma-
present at these values of the parameters. To initiate thgon of unstable TLM solitons into stable fundamental ones.
growth of the instability, we added a small uniformly distrib- Thjs outcome seems quite natural, as the fundamental soliton

ration. Figure 9 shows the onset of the oscillatory instabilitystant and the mismatch parameter.

after an initial transient of duratiotr=100. The instability

_do_es not completely destroy the TLM bu_t rather rearranges IV. TWO-DIMENSIONAL SOLITONS

it into a fundamental solution, emitting jets of nonsoliton

waves(lattice phononpin the process. Notice that the result-  Solitons in the 2D generalization of the SHG lattice are an

ant fundamental soliton is slightly displaced with respect toissue of principal interest, as they may be compared to their

the original position of the TLM. earlier studied counterparts in the two-dimensional DNLS
A similar outcome is observed in the case of the instabil-equation with the cubic on-site nonlinearity, see RgB$and

ity dominated by the imaginary eigenfrequencies; a typicareferences therein. It is necessary to stress that no collapse

il

;

¥
Lo

FIG. 10. The same as Fig. 9, but fke=0.2
and C=0.075, where a pair of purely imaginary
eigenfrequencies is responsible for the instability.
The instability again results in the conversion of
the TLM into a fundamental soliton. Notice the
persistent internal oscillations in the emerging
pulse.

lu(n,BZ+v(n,b)?

250
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2

FIG. 11. The 2D fundamental
solitons for k=—0.5. The top
panel shows the powers of the FF
(circles and SH (starg compo-
nents of the solution v€. A typi-
cal example of the soliton is
shown, forC=0.15, in the middle
panel; the left and right subplots
show the FF and SH fields, re-
spectively. The bottom panel

1 T T T T T T T T T shows the linear stability spectrum
05k | for the same case.
g of o CUNEEEEEEEETEIND O G0 o .
-05F .
_1 1 1 1 1 1 1 1 1 1
-25 -2 -1.5 -1 -05 0 05 1 1.5 2 25
®
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occurs in continuum SHG models in two dimensidB$§], charge. Therefore, we will also consider such structures in
contrary to what is the case for the NLS equation with thethe two-dimensional setup as another type of 2D solitons.
cubic nonlinearity{36]. Due to this fact, solitongthe funda- However, since this structure is essentially a bound state of
mental ones, without intrinsic vorticitymay be stable in the two out-of-phase sites, we will refrain from calling such an
SHG continuum model in two dimensiof35], even though entity a vortex.

they are unstable at some values of the paramésarslarly Aregular 2D lattice \_/OV'EGXZZ], whose structure emulates
to what was presented in the preceding section for the 1both the real and imaginary parts of edf)( can be based on
case. adual twisted ansatg22]. In this case, one TLM is arranged

The 2D equations for the FF and SH fields,, along one lattice direction in the real part of the solution, and
and v, differ from Egs. (1)—(4) by the form of the another TLM is built along the orthogonal direction in the
finite-difference Laplacian:  AyUmn=Ums 10+ Un_1n imaginary part. As it follows from the analysis of the SHG
+Unns1t Unn_1—4Upn. In line with the above-mentioned equations(at the AC limiy, such a dual structure can be
facts known for the continuum SHG model in the 2D caseplaced only in the FF field. However, the difference from the
our continuation method, starting from the AC limit, results configuration considered in the previous paragraph is that
in a branch of the fundamental-soliton solutions for all val-this time the corresponding SH field emulates the
ues of the coupling (we also call these solutions zero-spin continuum-approximation expression co(2thus carrying
solitons, as they carry no topological charge, i.e., “spi@)’ spin 2. Given the topological charge of the FF and SH fields,
This branch qualitatively shares the stability features of itsve will symbolize such vortices d4,2). The unstable spin-
1D counterpart. Examples of the 2D fundamental-soliton sohing solitons of the continuum SHG modg7] are of this
lutions are shown in Fig. 11. Even though the solution showrype.
in Fig. 11 is stable, it should be noticed, however, that simi- We have found that the phenomenology of the 2D TLM,
larly to 1D, if k is increased for a fixed, an imaginary illustrated by Fig. 12, is similar to that described above for
eigenvalue bifurcation will eventually occusee also the its 1D counterpart. In particular, fér=—0.5, a destabilizing
discussion in Sec. Il A For example, fo€=0.05, we have Hamiltonian Hopf bifurcation, generating a quartet of com-
found this bifurcation to occur fok~0.915. plex eigenvalues, takes placeGt C(?P’=0.145. It is note-

The next step is to construct 2D solitons carrying a topo-worthy that this critical value is larger than its counterpart in
logical charge(“spin” ) [22]. It is necessary to mention that the 1D version of the modeC(c}D)=0.125.
spinning solitons are well known in the continuum limit of  We also considered the development of the oscillatory
the SHG model, but, contrary to what is the case for thenstability of the TLM solutions in the 2D setting. A typical
fundamental solitons, the spinning ones are always stronglgxample is shown in Fig. 13 fdr= — 0.5 andC=0.249. The
unstable against azimuthal perturbations, which break theinitial configuration (not shown hergis a TLM with two
axial symmetny[37]. out-of-phase, next-nearest-neighbor peaks in the FF, and in-

A TLM excited in a 2D setting carries a topological phase, next-nearest-neighbor peaks in the SH field. One can

056606-9
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FIG. 12. The branch of the
two-dimensional TLM solutions,
found atk=-0.5. The top plot
shows, as in the previous figures,
the norms of the FF and SH com-
ponents of the solution v€. The
middle subplot shows an example
of the FF (left) and SH (right)
components of the TLM forC
=0.145(close to the onset of the
oscillatory instability. The lower
subplot shows the corresponding
eigenfrequencies, indicating the
presence of such an instability.

05 1 1.5 2 25

observe that the oscillatory instability starts to develop afteiplayed in Fig. 14 fork=0.25 andC=0.1. The solutions of
t~50, and eventually leads to a single-humped solutionthis type become unstable due to a quartet bifurcatio@ at
shown fort~95 in the top panels of Fig. 13. The bottom =C{"=0.119. Subsequent increase of the coupl®gdn-
panels show the development of the instabilishich starts  duces further instabilities, which set in @t= Céf)=0.138,
after approximately two oscillations with the FF peridd and then aC:C(Cf):OiGl. An example of the eigenvalue
=8r) for some of the central sites of the configuration. Thisspectrum is shown, fo€=0.19, in Fig. 15, where the pres-
result of the instability was found to be typical, and can beence of three quartets of complex eigenvalues is evident. It
naturally expected on the basis of arguments similar to thosghould be highlighted, however, that the stabilifpr C
presented in Sec. Il for the 1D problem. <CY) of this branch withS=2 in its SH field can be con-
The |1,2) vortex-solution branch demonstrates a some+rasted to the case of cubic nonlinearity, where such solutions
what similar phenomenology, but with a greater variety ofwere always found to be unstaf22].
potential instabilities. An example of tH&,2) vortex is dis- In all the cases considered, it was found that the net to-

FIG. 13. An example of the instability of the
2D TLM solution (used as an initial condition for
the time integratiopfor k= —0.5, C=0.249, and
A=0.25. The two top panels show final two-
dimensional spatial profiles of the FF and SH
fields (at t=94.65). It is clearly seen that a
symmetry-breaking instability has occurred, re-
sulting in the establishment of the single-humped
solution, which is stable. The two bottom panels
show the time evolution of two of the central-
most sites of the configuration for the FHfottom
left) and SH(bottom righj fields. The solid line
in both cases shows the real part of the field at the
site (n,m)=(10,10), the dashed line shows the
imaginary part at (10,10), the dash-dotted line is
the real part atrf,m)=(11,10), while the dotted
line shows the imaginary part of the field at
(11,10).
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FIG. 14. An example of thg1,2) vortex,
found for C=0.1 andk=0.25. This solution is
stable. Shown are the real and imaginary parts of
the FF field(in the top left and right panels, re-
spectively and the same for the SH fielthe
bottom left and right panels, respectively

pological charge in both FF and SH components of the soluthe one- and two-dimensional discrete second-harmonic-
tion coincided with the number of eigenfrequencies havinggenerating model. The stability of fundamental solitons was
the negative Krein sign in the eigenvalue spectrum. This obanalyzed in both dimensions. We have also studied twisted-
servation suggests a conjecture that the net vorti@itpoth ~ mode solitons for which there always exists an instability
components of the vortexgives the number of possible dif- threshold, which was identified in the one-dimensional lat-
ferent oscillatory instabilitiegor, in other words, the maxi-  tjce. Similar stability thresholds have been found for solitons
mum possible number of e|genvaIL_Je qqar)telt@te that,_lf & with a topological charge of the typds,0) and|1,2) (the
phase change ofr across the soliton in the 1D lattice is |5tter one may be interpreted as a discrete voriexhe 2D
considered as the soliton’s topological charge, this conjecturgyice |n the case when the one-dimensional twisted-mode
IS als_o true for th? 1D TL.M sqlutlons, V.Vh'Ch were .con5|d- solitons, or two-dimensional topologically charged ones, are
ered in th_e preceding sectigheir topological charge is then unstable, direct simulations have demonstrated that the insta-
1 and 0 in the FF and SH components, respectjvely bility, which may be due to either a complex or purely imagi-

nary pair of eigenfrequencies, initiates transformation of the

V. CONCLUSION unstable soliton into a stable fundamental one, which is pos-
sible as the topological charge is not conserved in discrete
We have considered many families of solitary waves in systems.

0.1 T T T T T T T T T
o) [0
0.08F o o T
0.06 o o 8
0.04 b
0.02| 1 FIG. 15. The linear stability spectrum for the
~ vortexlike state of|1,2) type atk=0.25 andC
8 of OG0 GHEEEEEEEEDOC O COEEEEEEEEEEEEEELED 000 1 =0.19. There are three eigenvalues with the
negative Krein sign, which give rise, after colli-
-002r 1 sions with the continuous spectrum, to three ei-
o0k | genvalue quartets.
-0.06 o o -
L o o 4
-0.08 P o
_01 1 1 1 1 1 1 1 1 1
-25 -2 -15 -1 -05 0 05 1 15 2 25
®
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